A modified DIRECT algorithm for a problem in astrophysics
نویسندگان
چکیده
We present a modification of the DIRECT algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema and unavailable derivatives. DIRECT performs a sampling of the feasible domain over a set of points that becomes dense in the limit, thus ensuring the everywhere dense convergence; however, it results ineffective on significant istances of the problem under consideration, because it tends to produce a uniform coverage of the feasible domain, by oversampling regions that are far from the optimal solution. DIRECT has been modified by embodying information provided by a suitable discretization of the feasible domain, based on the signal theory, which takes into account the variability of the objective function. Numerical experiments show that DIRECT-G largely outperforms DIRECT and the grid search, the latter being the reference algorithm in the astrophysics community. Furthermore, DIRECT-G is comparable with a genetic algorithm specifically developed for the problem. However, DIRECT-G inherits the convergence properties of DIRECT, whereas the genetic algorithm has no guarantee of convergence.
منابع مشابه
Modified particle swarm optimization algorithm to solve location problems on urban transportation networks (Case study: Locating traffic police kiosks)
Nowadays, traffic congestion is a big problem in metropolises all around the world. Traffic problems rise with the rise of population and slow growth of urban transportation systems. Car accidents or population concentration in particular places due to urban events can cause traffic congestions. Such traffic problems require the direct involvement of the traffic police, and it is urgent for the...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملA modified branch and bound algorithm for a vague flow-shop scheduling problem
Uncertainty plays a significant role in modeling and optimization of real world systems. Among uncertain approaches, fuzziness describes impreciseness while for ambiguity another definition is required. Vagueness is a probabilistic model of uncertainty being helpful to include ambiguity into modeling different processes especially in industrial systems. In this paper, a vague set based on dista...
متن کاملAn adaptive modified firefly algorithm to unit commitment problem for large-scale power systems
Unit commitment (UC) problem tries to schedule output power of generation units to meet the system demand for the next several hours at minimum cost. UC adds a time dimension to the economic dispatch problem with the additional choice of turning generators to be on or off. In this paper, in order to improve both the exploitation and exploration abilities of the firefly algorithm (FA), a new mo...
متن کاملA Modified DIviding RECTangles Algorithm for a Problem in Astrophysics
We present a modification of the DIRECT (DIviding RECTangles) algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem, since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema and unavaila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010